An LDA-Based Approach to Scientific Paper Recommendation

نویسندگان

  • Maha Amami
  • Gabriella Pasi
  • Fabio Stella
  • Rim Faiz
چکیده

Recommendation of scientific papers is a task aimed to support researchers in accessing relevant articles from a large pool of unseen articles. When writing a paper, a researcher focuses on the topics related to her/his scientific domain, by using a technical language. The core idea of this paper is to exploit the topics related to the researchers scientific production (authored articles) to formally define her/his profile; in particular we propose to employ topic modeling to formally represent the user profile, and language modeling to formally represent each unseen paper. The recommendation technique we propose relies on the assessment of the closeness of the language used in the researchers papers and the one employed in the unseen papers. The proposed approach exploits a reliable knowledge source for building the user profile, and it alleviates the cold-start problem, typical of collaborative filtering techniques. We also present a preliminary evaluation of our approach on the DBLP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Courses Recommendation based on LDA

In this paper we propose a course recommendation system based on historical grades of students in college. Our model will be able to recommend available courses in sites such as: Coursera, Udacity, Edx, etc. To do so, probabilistic topic models are used as follows. On one hand, Latent Dirichlet Allocation (LDA) topic model infers topics from content given in a college course syllabus. On the ot...

متن کامل

Intelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering

During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...

متن کامل

Classification of Topic Evolutions in Scientific Conferences

Abstract—The number of scientific publications have been increasing explosively in recent years. Although scholar searching engines and recommendation systems help to find relevant papers, neither of them can build overviews of a certain scientific conference, which is more meaningful and important for researchers to keep up with academic trends. In this paper, we propose the concepts of topic ...

متن کامل

Semantic Grounding of Hybridization for Tag Recommendation

Tag recommendation for new resources is one of the most important issues discussed recently. Many existing approaches ignore text semantics and can not recommend new tags which are not in the training dataset (e.g., FolkRank). Some exceptional semantic approaches use a probabilistic latent semantic method to recommend tags in terms of topic knowledge (e.g., ACT model). However, they do not perf...

متن کامل

Automatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach

In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016